Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.271
Filtrar
1.
Acta Vet Hung ; 72(1): 24-32, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38578702

RESUMO

Feeding costs of farmed insects may be reduced by applying alternative nitrogen sources such as urea that can partly substitute true proteins. The aim of this study was to examine the effects of different nitrogen sources on body weight (BW) and survival rate (SR) of the Jamaican field cricket (JFC, Gryllus assimilis), the house cricket (HC, Acheta domesticus), yellow mealworm larvae (YM, Tenebrio molitor) and superworm larvae (SW, Zophobas morio). Crickets were either housed individually or in groups, and larvae were group-housed. Six isonitrogenous feeds composed of 3.52% nitrogen were designed for all four insect species using four independent replicates with micellar casein: urea proportions of 100-0%, 75-25%, 50-50%, 25-75%, 0-100% and 100% extracted soybean meal. All selected insect species were able to utilise urea. However, urea as the only nitrogen source resulted in low final BW. In the HC, the JFC, and the YM on nitrogen basis urea can replace 25% of micellar casein without having any negative effects on BW and SR in comparison to the 100% micellar casein group. In the SW, a 25% urea level did not have a significant effect on final BW, but SR decreased significantly.


Assuntos
Besouros , Gryllidae , Tenebrio , Animais , Caseínas/metabolismo , Insetos , Larva/metabolismo , Tenebrio/metabolismo , Peso Corporal , Nitrogênio , Suplementos Nutricionais
2.
Environ Sci Technol ; 58(15): 6647-6658, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38563431

RESUMO

The biodegradation of polypropylene (PP), a highly persistent nonhydrolyzable polymer, by Tenebrio molitor has been confirmed using commercial PP microplastics (MPs) (Mn 26.59 and Mw 187.12 kDa). This confirmation was based on the reduction of the PP mass, change in molecular weight (MW), and a positive Δδ13C in the residual PP. A MW-dependent biodegradation mechanism was investigated using five high-purity PP MPs, classified into low (0.83 and 6.20 kDa), medium (50.40 and 108.0 kDa), and high (575.0 kDa) MW categories to access the impact of MW on the depolymerization pattern and associated gene expression of gut bacteria and the larval host. The larvae can depolymerize/biodegrade PP polymers with high MW although the consumption rate and weight losses increased, and survival rates declined with increasing PP MW. This pattern is similar to observations with polystyrene (PS) and polyethylene (PE), i.e., both Mn and Mw decreased after being fed low MW PP, while Mn and/or Mw increased after high MW PP was fed. The gut microbiota exhibited specific bacteria associations, such as Kluyvera sp. and Pediococcus sp. for high MW PP degradation, Acinetobacter sp. for medium MW PP, and Bacillus sp. alongside three other bacteria for low MW PP metabolism. In the host transcriptome, digestive enzymes and plastic degradation-related bacterial enzymes were up-regulated after feeding on PP depending on different MWs. The T. molitor host exhibited both defensive function and degradation capability during the biodegradation of plastics, with high MW PP showing a relatively negative impact on the larvae.


Assuntos
Microbiota , Tenebrio , Animais , Tenebrio/metabolismo , Tenebrio/microbiologia , Plásticos , Polipropilenos/metabolismo , Microplásticos , Peso Molecular , Poliestirenos , Larva/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental
3.
Sci Total Environ ; 927: 172243, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582118

RESUMO

Globally, over 287 million tons of plastic are disposed in landfills, rivers, and oceans or are burned every year. The results are devastating to our ecosystems, wildlife and human health. One promising remedy is the yellow mealworm (Tenebrio molitor larvae), which has proved capable of degrading microplastics (MPs). This paper presents a new investigation into the biodegradation of aged polyethylene (PE) film and polystyrene (PS) foam by the Tenebrio molitor larvae. After a 35 - day feeding period, both pristine and aged MPs can be consumed by larvae. Even with some inhibitions in larvae growth due to the limited nutrient supply of aged MPs, when compared with pristine MPs, the aged MPs were depolymerized more efficiently in gut microbiota based on gel permeation chromatography (GPC) and Fourier transform infrared spectroscopy (FTIR) analysis. With the change in surface chemical properties, the metabolic intermediates of aged MPs contained more oxygen-containing functional groups and shortened long-chain alkane, which was confirmed by gas chromatography and mass spectrometry (GC-MS). High-throughput sequencing revealed that the richness and diversity of gut microbes were restricted in the MPs-fed group. Although MPs had a negative effect on the relative abundance of the two dominant bacteria Enterococcaceae and Lactobacillaceae, the aged MPs may promote the relative abundance of Enterobacteriaceae and Streptococcaceae. Redundancy analysis (RDA) further verified that the aged MPs are effectively biodegraded by yellow mealworm. This work provides new insights into insect-mediated mechanisms of aged MP degradation and promising strategies for MP sustainable and efficient solutions.


Assuntos
Biodegradação Ambiental , Larva , Microplásticos , Polietileno , Poliestirenos , Tenebrio , Animais , Microplásticos/metabolismo , Tenebrio/metabolismo , Polietileno/metabolismo , Microbioma Gastrointestinal , Poluentes Químicos da Água/metabolismo
4.
Food Funct ; 15(8): 4552-4563, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38584501

RESUMO

The exploration of edible insects, specifically Alphitobius diaperinus and Tenebrio molitor, as sustainable sources of protein for human consumption is an emerging field. However, research into their effects on intestinal health, especially in relation to inflammation and permeability, remains limited. Using ex vivo and in vivo models of intestinal health and disease, in this study we assess the impact of the above insects on intestinal function by focusing on inflammation, barrier dysfunction and morphological changes. Initially, human intestinal explants were exposed to in vitro-digested extracts of these insects, almond and beef. Immune secretome analysis showed that the inflammatory response to insect-treated samples was comparatively lower than it was for samples exposed to almond and beef. Animal studies using yellow mealworm (Tenebrio molitor) and buffalo (Alphitobius diaperinus) flours were then used to evaluate their safety in healthy rats and LPS-induced intestinal dysfunction rats. Chronic administration of these insect-derived flours showed no adverse effects on behavior, metabolism, intestinal morphology or immune response (such as inflammation or allergy markers) in healthy Wistar rats. Notably, in rats subjected to proinflammatory LPS-induced intestinal dysfunction, T. molitor consumption did not exacerbate symptoms, nor did it increase allergic responses. These findings validate the safety of these edible insects under healthy conditions, demonstrate their innocuity in a model of intestinal dysfunction, and underscore their promise as sustainable and nutritionally valuable dietary protein sources.


Assuntos
Insetos Comestíveis , Proteínas de Insetos , Ratos Wistar , Tenebrio , Animais , Ratos , Humanos , Masculino , Intestinos/efeitos dos fármacos , Intestinos/imunologia , Enteropatias , Modelos Animais de Doenças , Feminino , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos
5.
Sci Rep ; 14(1): 6836, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514719

RESUMO

Insect-based diets are gaining interest as potential ingredients in improving poultry gut health. This study assessed the dietary treatment with whole dried Tenebrio molitor larvae (TM) on broiler chickens' gut microbiota and morphology. 120 Ross-308 broilers received treated diets with 5% (TM5) and 10% (TM10) replacement ratio in a 35-day trial. Intestinal histomorphometry was assessed, as well as claudin-3 expression pattern and ileal and caecal digesta for microbial community diversity. Null hypothesis was tested with two-way ANOVA considering the intestinal segment and diet as main factors. The TM5 group presented higher villi in the duodenum and ileum compared to the other two (P < 0.001), while treated groups showed shallower crypts in the duodenum (P < 0.001) and deeper in the jejunum and ileum than the control (P < 0.001). Treatments increased the caecal Firmicutes/Bacteroidetes ratio and led to significant changes at the genus level. While Lactobacilli survived in the caecum, a significant reduction was evident in the ileum of both groups, mainly owed to L. aviarius. Staphylococci and Methanobrevibacter significantly increased in the ileum of the TM5 group. Results suggest that dietary supplementation with whole dried TM larvae has no adverse effect on the intestinal epithelium formation and positively affects bacterial population richness and diversity.


Assuntos
Microbioma Gastrointestinal , Tenebrio , Animais , Galinhas/microbiologia , Ração Animal/análise , Dieta/veterinária , Larva , Suplementos Nutricionais/análise
6.
J Environ Manage ; 355: 120545, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38447512

RESUMO

Insects receive increasing attention as an alternative source of protein for animals and humans, and thus, the production of low-cost insects for meeting the dietary demand on sustained basis is an ever-growing concept. This study aims to design dietswith locally available agricultural byproducts from Greece as feed for larvae of the yellow mealworm, Tenebrio molitor L. (Coleoptera: Tenebrionidae). This will considerably reduce the cost of insect feed and the environmental impact of insect farming by using locally available agricultural byproducts as economic insect feedstock. More specifically, five agricultural byproducts derived from the production of cereals and legumes were utilized to design twelve different diets at two protein levels, i.e., 17.4 and 22.5% protein content. All diets were evaluated both at laboratory scale, but also at pilot scale. Based on the obtained results, both bioassays revealed that the diets contained one legume and one cereal byproduct (i.e., lupin and triticale as well as lupin and oat) supported more efficiently the growth and performance of the larvae, irrespective of the protein level. Indicatively, individual larval weight of the best performed larvae from both groups ranged from 132 to 142 mg. Moreover, our results highlight the fact that data derived from laboratory scale bioassays are not always easy to be extrapolated to industrial production. For instance, the total harvest of larvae, a parameter assessed in the tray scale bioassay, exhibited a disparity between diet A2 (910 g) and diet A3 (749 g), despite both being deemed optimal in the laboratory-scale experiment. Our study aims to promote a circular approach for the industrial rearing of insects through integration of local agricultural byproducts into specific diets for T. molitor larvae.


Assuntos
Besouros , Tenebrio , Animais , Humanos , Tenebrio/metabolismo , Ração Animal/análise , Larva/metabolismo , Proteínas/metabolismo , Fazendas , Verduras
7.
Genes Genomics ; 46(5): 601-611, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38546934

RESUMO

Human advancements in agriculture, urbanization, and industrialization have led to various forms of environmental pollution, including heavy metal pollution. Insects, as highly adaptable organisms, can survive under various environmental stresses, which induce oxidative damage and impair antioxidant systems. To investigate the peroxidase (POX) family in Tenebrio molitor, we characterized two POXs, namely TmPOX-iso1 and TmPOX-iso2. The full-length cDNA sequences of TmPox-iso1 and TmPox-iso2 respectively consisted of an open reading frame of 1815 bp encoding 605 amino acids and an open reading frame of 2229 bp encoding 743 amino acids. TmPOX-iso1 and TmPOX-iso2 homologs were found in five distinct insect orders. In the phylogenetic tree analysis, TmPOX-iso1 was clustered with the predicted POX protein of T. castaneum, and TmPOX-iso2 was clustered with the POX precursor protein of T. castaneum. During development, the highest expression level of TmPox-iso1 was observed in the pre-pupal stage, while that of TmPox-iso2 expression were observed in the pre-pupal and 4-day pupal stages. TmPox-iso1 was primarily expressed in the early and late larval gut, while TmPox-iso2 mRNA expression was higher in the fat bodies and Malpighian tubules. In response to cadmium chloride treatment, TmPox-iso1 expression increased at 3 hours and then declined until 24 hours, while in the zinc chloride-treated group, TmPox-iso1 expression peaked 24 hours after the treatment. Both treated groups showed increases in TmPox-iso2 expression 24 hours after the treatments.


Assuntos
Tenebrio , Animais , Humanos , Tenebrio/genética , Peroxidases/genética , Filogenia , Proteínas/genética , Aminoácidos/genética
8.
J Econ Entomol ; 117(2): 417-426, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38412361

RESUMO

The arthropod intestinal tract and other anatomical parts naturally carry microorganisms. Some of which are pathogens, secrete toxins, or carry transferable antibiotic-resistance genes. The risks associated with the production and consumption of edible arthropods are dependent on indigenous microbes, as well as microbes introduced during the processes of rearing. This mass arthropod production puts individual arthropods in close proximity, which increases the possibility of their exposure to antibiotic-resistant bacteria carried by bacteria from fellow insects, industry workers, or rearing hardware and substrates. The purpose of this study was to determine if the alimentary tract of the yellow mealworm provided an environment permitting horizontal gene transfer between bacteria. The effect of the concentration of bacterial exposure was also assessed. Antibiotic resistance gene transfer between marker Salmonella Lignières (Enterobacterales: Enterobacteriaceae) and Escherichia coli (Migula) (Enterobacterales: Enterobacteriaceae) introduced into the larval gut demonstrated that the nutrient-rich environment of the yellow mealworm gut provided favorable conditions for the transfer of antibiotic resistance genes. Conjugation frequencies were similar across inoculum concentrations; however, transconjugant production correlated positively to increased exposure concentration. The lowest concentration of bacterial exposure required enrichment to detect and thus may have been approaching a threshold level for the 2 bacteria to colocate within the expanse of the larval gut. While many factors can affect this transfer, the simple factor of the proximity of donor and recipient bacteria, as defined by the concentration of bacteria within the volume of the insect gut, likely primarily contributed to the efficiency of antibiotic gene transfer.


Assuntos
Antibacterianos , Tenebrio , Animais , Antibacterianos/farmacologia , Tenebrio/genética , Tenebrio/microbiologia , Larva , Plasmídeos , Bactérias/genética , Insetos/genética , Resistência Microbiana a Medicamentos , Escherichia coli/genética
9.
Food Chem ; 445: 138719, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401309

RESUMO

The present work aimed to quantify the macronutrients and the fatty acid (FA) profile in different killing methods, blanching (BC) and freezing (FR), on edible insects of the speciesTenebrio molitor(TM) andZophobas morio(ZM). Concerning macronutrients TM-BC and TM-FR presented 51.2% and 50.6% of protein, 28% and 29.4% of lipids, and 12.4% and 11.4%. Meanwhile, ZM-BC and ZM-FR expressed 42.8% and 43.7% of protein, 39.1% and 40.1% of lipids, and 10.7% and 8.9% of carbohydrates. The FA of TM and ZM shows respectively values of Saturated Fatty Acids (∑SFA) 30% - 45%, Monounsaturated (MUFA) 47% - 32%, Polyunsaturated (∑PUFA) 23% - 22%, Atherogenicity Index (AI) 0.64 - 0.75, Thrombogenicity Index (TI) 0.77 - 1.44 and hypocholesterolemic/hypercholesterolemic index (h/H) of 2.50-1.51. Based on the results obtained, the slaughter methods showed statistically differences in relation to MUFA's in TM, and ZM larvae only in the minority fraction of FA.


Assuntos
Besouros , Insetos Comestíveis , Tenebrio , Animais , Ácidos Graxos , Larva
10.
Cell Tissue Res ; 396(1): 19-40, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38409390

RESUMO

In holometabolous insects, extensive reorganisation of tissues and cells occurs at the pupal stage. The remodelling of the external exoskeleton and internal organs that intervenes during metamorphosis has been traditionally studied in many insect species based on histological or ultrastructural methods. This study demonstrates the use of synchrotron X-ray phase-contrast micro-computed tomography as a powerful, non-destructive tool for in situ morphological observation of anatomical structures at the pupal stage in two Tenebrionid beetles, i.e. Tribolium castaneum and Tenebrio molitor, known as important pests, as well as emerging and promising models in experimental biology. Virtual sections and three-dimensional reconstructions were performed on both males and females at early, intermediate, and late pupal stage. The dataset allowed us to observe the remodelling of the gut and nervous system as well as the shaping of the female and male reproductive system at different pupal ages in both mealworm and red flour beetles. Moreover, we observed that the timing and duration pattern of organ development varied between the species analysed, likely related to the species-specific adaptations of the pre-imaginal stages to environmental conditions, which ultimately affect their life cycle. This research provides new knowledge on the morphological modifications that occur during the pupal stage of holometabolous insects and provides a baseline set of information on beetle metamorphosis that may support future research in forensics, physiology, and ecology as well as an image atlas for educational purposes.


Assuntos
Tenebrio , Tribolium , Animais , Masculino , Feminino , Tribolium/anatomia & histologia , Tribolium/fisiologia , Larva/fisiologia , Microtomografia por Raio-X , Metamorfose Biológica
11.
Food Chem ; 444: 138679, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38341920

RESUMO

Edible insects are attracting increased interest worldwide, because they are arguably more sustainable than more established animal foods. Apart from being rich in protein and minerals, they can also form vitamin D3 after treatment with UVB light (290-315 nm). However, only limited research, which has almost exclusively been conducted on living insects, reared under UVB lamps, has been done in this regard. As research on mushrooms has shown, that vitamin D formation is much more effective and less time consuming, when a previously sliced or ground product is treated with UVB light, it would likely be more practical to treat powdered insects with UVB light, rather than rearing them under UVB lamps. Therefore, the aim of this work was to confirm the presence of vitamin D3 in powdered UVB-treated yellow mealworms (Tenebrio molitor), migratory locusts (Locusta migratoria) and two-spotted crickets (Gryllus bimaculatus) as well as to subsequently quantify potential vitamin D content. Samples were analyzed via HPLC, and presence of vitamin D3 was verified via standard addition and spectrum analysis. UVB-treated migratory locusts and two-spotted crickets did not contain quantifiable amounts of vitamin D3. However, UVB-treated mealworms showed substantial amounts of vitamin D3 (8.95-18.24 µg/g dry matter). Thus, the UVB-treatment of powdered mealworm is an effective approach via which to enhance their vitamin D3 content and even modest serving sizes can supply the recommended daily intake of vitamin D.


Assuntos
Insetos Comestíveis , Tenebrio , Animais , Vitamina D , Vitaminas , Colecalciferol/análise , Insetos
12.
Front Immunol ; 15: 1354046, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38404577

RESUMO

In invertebrates, immune priming is the ability of individuals to enhance their immune response based on prior immunological experiences. This adaptive-like immunity likely evolved due to the risk of repeated infections by parasites in the host's natural habitat. The expression of immune priming varies across host and pathogen species, as well as infection routes (oral or wounds), reflecting finely tuned evolutionary adjustments. Evidence from the mealworm beetle (Tenebrio molitor) suggests that Gram-positive bacterial pathogens play a significant role in immune priming after systemic infection. Despite the likelihood of oral infections by natural bacterial pathogens in T. molitor, it remains debated whether ingestion of contaminated food leads to systemic infection, and whether oral immune priming is possible is currently unknown. We first attempted to induce immune priming in both T. molitor larvae and adults by exposing them to food contaminated with living or dead Gram-positive and Gram-negative bacterial pathogens. We found that oral ingestion of living bacteria did not kill them, but septic wounds caused rapid mortality. Intriguingly, the consumption of either dead or living bacteria did not protect against reinfection, contrasting with injury-induced priming. We further examined the effects of infecting food with various living bacterial pathogens on variables such as food consumption, mass gain, and feces production in larvae. We found that larvae exposed to Gram-positive bacteria in their food ingested less food, gained less mass and/or produced more feces than larvae exposed to contaminated food with Gram-negative bacteria or control food. This suggests that oral contamination with Gram-positive bacteria induced both behavioral responses and peristalsis defense mechanisms, even though no immune priming was observed here. Considering that the oral route of infection neither caused the death of the insects nor induced priming, we propose that immune priming in T. molitor may have primarily evolved as a response to the infection risk associated with wounds rather than oral ingestion.


Assuntos
Besouros , Tenebrio , Animais , Larva , Bactérias , Bactérias Gram-Positivas , Bactérias Gram-Negativas
13.
Vet Rec ; 194(3): 101, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38305545

Assuntos
Tenebrio , Animais , Alimentos , Larva
14.
Chemosphere ; 352: 141499, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38373446

RESUMO

Plastics biodegradation by insect larvae is considered as a new strategy for plastic wastes treatment. To uncover the biodegradation of a more complex chemical polymer of melamine formaldehyde (MF) by insect larvae, two worm species of yellow mealworm Tenebrio molitor and superworm Zophobas atratus were fed on MF foam as sole diet for 45 days with sole bran diet as control. Although the MF foam consumption by yellow mealworms of 0.38 mg/d/g-larvae was almost 40% higher than that by superworms of 0.28 mg/d/g-larvae, a similar decrease of survival rates in both species were obtained at about 58%, indicating the adverse effects on their growth. Depolymerization and biodegradation of MF foam occurred in both larval guts, but was more extensive in yellow mealworms. MF foam sole diet influenced gut bacterial and fungal microbiomes of both larvae species, which were assessed by Illumina MiSeq on day 45. Compared to the bran-fed group, both gut bacterial and fungal communities significantly changed in MF-fed groups, but differed in the two larvae species. The results demonstrated a strong association between the distinctive gut microbiome and MF foam degradation, such as unclassified Enterobacteriaceae, Hyphopichia and Issatchenkia. However, sole MF foam diet negatively influenced worms, like lower survival rates and gut abnormalities. In summary, MF foam could be degraded by both yellow mealworms and superworms, albeit with adverse effects. Gut microbes were strongly associated to MF foam degradation, especially the gut fungi.


Assuntos
Besouros , Microbioma Gastrointestinal , Tenebrio , Triazinas , Animais , Tenebrio/metabolismo , Poliestirenos/metabolismo , Besouros/metabolismo , Larva/metabolismo , Plásticos/metabolismo , Bactérias/metabolismo , Ingestão de Alimentos
15.
Ecotoxicol Environ Saf ; 272: 116046, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38309231

RESUMO

The potential of invertebrates in the biodegradation of plastic polymers such as polyvinyl chloride (PVC) is receiving increasing attention. The present study is aimed to identify the gut microbiome involved in this degradation in yellow mealworms, i.e., the larvae of Tenebrio molitor Linnaeus. The egested PVC polymer experienced a dramatic reduction in both number average molecular weight (Mn) and weight average molecular weight (Mw) of 99.3% and 99.6%, respectively, whereas FTIR analysis revealed chemical alterations. Mass spectrometry analysis identified two potential degradation products: phthalic acid, di(2-propylpentyl) ester and 2-Propenoic acid, tridecyl ester. Further, we used metagenomic sequencing to elucidate the response of the gut microbiome when transitioning from bran to PVC as a food source, identifying four microorganisms actively involved in PVC degradation. Additionally, metagenomic functional analysis of the gut microbiome identified 111 key gene modules that were significantly enriched. In summary, our findings suggest that yellow mealworms adapt to PVC degradation by modifying their gut microbiome both structurally and functionally.


Assuntos
Microbioma Gastrointestinal , Tenebrio , Animais , Poliestirenos/metabolismo , Microbioma Gastrointestinal/fisiologia , Plásticos/metabolismo , Larva/metabolismo , Biodegradação Ambiental , Ésteres
16.
Food Chem ; 443: 138609, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38295569

RESUMO

This study explored the effect of adding transglutaminase (TGase) to a co-gel of Tenebrio Molitor larvae protein (TMLP) and myofibrillar protein (MP). Different concentrations of TGase (0-90 U/g) were added to the co-gel. The results showed that 60 U/g TGase treatment significantly improved the gel strength and water holding capacity (WHC) by 26.51 g and 9.2 %, respectively. TGase promoted the rheological properties and accelerated the three-dimensional network structure of the co-gel. Moreover, TGase significantly increased (P < 0.05) the tyrosine residues, tryptophan residues content and hydrophobic interactions of the aliphatic groups. The chemical forces between the protein molecules changed. TGase promoted the transition of α-helix to ß-sheet and free water to immobilized water, thereby improving the WHC of co-gel. The principal component analysis reflected the links among indicators. This study illustrated that TGase might be an effective strategy to improve the co-gel of TMLP and MP and emulsified meat products with insects.


Assuntos
Tenebrio , Animais , Tenebrio/metabolismo , Larva/metabolismo , Transglutaminases/metabolismo , Proteínas Musculares/química , Géis/química , Água
17.
J Hazard Mater ; 465: 133446, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38219578

RESUMO

Polyethylene terephthalate (PET or polyester) is a commonly used plastic and also contributes to the majority of plastic wastes. Mealworms (Tenebrio molitor larvae) are capable of biodegrading major plastic polymers but their degrading ability for PET has not been characterized based on polymer chain size molecular size, gut microbiome, metabolome and transcriptome. We verified biodegradation of commercial PET by T. molitor larvae in a previous report. Here, we reported that biodegradation of commercial PET (Mw 29.43 kDa) was further confirmed by using the δ13C signature as an indication of bioreaction, which was increased from - 27.50‰ to - 26.05‰. Under antibiotic suppression of gut microbes, the PET was still depolymerized, indicating that the host digestive enzymes could degrade PET independently. Biodegradation of high purity PET with low, medium, and high molecular weights (MW), i.e., Mw values of 1.10, 27.10, and 63.50 kDa with crystallinity 53.66%, 33.43%, and 4.25%, respectively, showed a mass reduction of > 95%, 86%, and 74% via broad depolymerization. Microbiome analyses indicated that PET diets shifted gut microbiota to three distinct structures, depending on the low, medium, and high MW. Metagenome sequencing, transcriptomic, and metabolic analyses indicated symbiotic biodegradation of PET by the host and gut microbiota. After PET was fed, the host's genes encoding degradation enzymes were upregulated, including genes encoding oxidizing, hydrolyzing, and non-specific CYP450 enzymes. Gut bacterial genes for biodegrading intermediates and nitrogen fixation also upregulated. The multiple-functional metabolic pathways for PET biodegradation ensured rapid biodegradation resulting in a half-life of PET less than 4 h with less negative impact by PET MW and crystallinity.


Assuntos
Tenebrio , Animais , Tenebrio/metabolismo , Tenebrio/microbiologia , Poliestirenos/metabolismo , Polietilenotereftalatos/metabolismo , Polímeros , Larva/metabolismo , Polietileno/metabolismo , Plásticos/metabolismo , Biodegradação Ambiental , Metaboloma
18.
Food Res Int ; 176: 113846, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38163692

RESUMO

The aim of this study was to investigate the effect of replacing different amounts (5 %, 10 %, 15 %, 20 % and 25 %) of lean meat with Tenebrio molitor larvae protein (TMLP) on the quality profiles of hybrid frankfurters. The results showed that there were no obvious differences in moisture, protein or fat content of all the hybrid frankfurters (P > 0.05), only a higher substitution rate (from 10 % to 25 %) resulted in a higher ash content than the control group (P < 0.05). With the increasing replacement rate (5 %, 10 % and 15 %), the cooking loss of the hybrid frankfurters showed the similar effects as the control group (P > 0.05), whereas the higher replacement rates of 20 % and 25 % obviously decreased the emulsion stability of the hybrid frankfurters. Moreover, with lower substitution rate (5 %, 10 % and 15 %) there were no significant differences in cooking loss between the hybrid frankfurters and the control group (P > 0.05), whereas the higher substitution rates (20 % and 25 %) obviously increased the cooking loss of the hybrid frankfurters (P < 0.05). Meanwhile, as the level of substitution increased, the hybrid frankfurters had higher digestibility, poorer texture than the standard frankfurters, as well as the rheological behaviour of hybrid meat batters (P < 0.05). The results showed that a moderate level (15 %) of TMLP was used to replace lean pork could be potentially and successfully be used to produce hybrid frankfurters.


Assuntos
Produtos da Carne , Tenebrio , Animais , Estudos de Viabilidade , Cor , Culinária , Produtos da Carne/análise
19.
Biopreserv Biobank ; 22(1): 51-59, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37192475

RESUMO

The objective of this study was to evaluate the effects of different concentrations of antifreeze protein (AFP) extracted from the larva of the beetle, Tenebrio molitor (TmAFP), on vitrification of in vitro-produced bovine embryos. In vitro-produced blastocysts were divided into three experimental groups and vitrified using a cryotop. TmAFP was added to the equilibrium solution (ES) and vitrification solution (VS) at a concentration of 0 ng/mL (control), 500 ng/mL (500TmAFP), or 1000 ng/mL (1000TmAFP). Vitrification was carried out by first placing the blastocysts in ES for 2 minutes (7.5% ethylene glycol [EG] and 7.5% dimethyl sulfoxide [DMSO]). The blastocysts were then transferred to VS (15% EG and 15% DMSO) and promptly deposited on a cryotop stem and submerged in liquid nitrogen. Warming was carried out in three steps with decreasing sucrose concentrations. After warming, the blast cells were cultured for 24 hours for subsequent survival analysis and ultrastructural evaluation. There was a significant difference in the survival rate and expansion in the 500TmAFP group compared with the other groups. The ultrastructural analysis revealed intracellular lesions in all vitrified embryos; however, the embryos of the 500TmAFP and 1000TmAFP groups showed fewer cytoplasmic lesions compared with the control group. Taken together, addition of TmAFP can mitigate cellular changes that involve organelles and cellular components essential for proper functioning and improve the viability of warmed and vitrified in vitro-produced bovine embryos.


Assuntos
Tenebrio , Vitrificação , Animais , Bovinos , Criopreservação , Dimetil Sulfóxido , Crioprotetores/farmacologia , Proteínas Anticongelantes/farmacologia , Etilenoglicol/farmacologia
20.
Mycotoxin Res ; 40(1): 123-132, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37968430

RESUMO

Beauveria bassiana, a representative entomopathogenic fungus, is increasingly being utilized as an eco-friendly pest management alternative to chemical insecticides. This fungus produces a range of insecticidal secondary metabolites that act as antimicrobial and immunosuppressive agents. However, detailed qualitative and quantitative analysis related to these compounds remains scarce, we developed a method for the rapid analysis of these metabolites. Eight secondary metabolites (bassianin, bassianolide, beauvericin, beauveriolide I, enniatin A, A1, and B, and tenellin) were efficiently extracted when B. bassiana-infected Tenebrio molitor larvae were ground in 70% EtOH extraction solvent and subsequently subjected to ultrasonic treatment for 30 min. The eight metabolites were rapidly and simultaneously analyzed using ultra-performance liquid chromatography-quadrupole-Orbitrap mass spectrometry (UPLC-Q-Orbitrap MS). Bassianolide (20.6-51.1 µg/g) and beauvericin (63.6-109.8 µg/g) were identified as the main metabolites in B. basssiana-infected larvae, indicating that they are likely major toxins of B. bassiana. Validation of the method exhibited recovery rates in the range of 80-115% and precision in the range of 0.1-8.0%, indicating no significant interference from compounds in the matrix. We developed a method to rapidly analyze eight insecticidal metabolites using UPLC-Q-Orbitrap MS. This can be extensively utilized for detecting and producing insecticidal fungal secondary metabolites.


Assuntos
Beauveria , Inseticidas , Tenebrio , Animais , Beauveria/metabolismo , Cromatografia Líquida de Alta Pressão , Larva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...